Both loops oscillate without any loss of energy.
In loop A the voltage across $C_1$ varies sinusoidally between $0$ and $2\epsilon$. The angular frequency of oscillation is $\omega_0=\frac{1}{\sqrt{LC}}$. So the voltage across $C_1$ at time $t_1$ after connection with the battery is $\epsilon (1-\cos\omega_0 t_1)$. See transient current in an LC circuit with a DC supply.
(This is similar to a mass on a spring in a uniform gravity field, with the mass being dropped when the spring is at its relaxed length. The mass oscillates around the equilibrium position for which $kx_0=mg$, so the extension oscillates between $0$ and $2x_0$. )
When the switch reaches position B the PDs across $C_1$ and $C_3$ are opposed. The total PD in the loop is $V=\epsilon_1 - E$ or $E-\epsilon_1$, depending on which is bigger, where $\epsilon_1$ is the PD across $C_1$ when the switch is moved from A to B.
(Query: Are $E$ and $\epsilon$ different? Perhaps the examiner intends them to be the same? Then we can be sure that the initial PD across $C_3$ will be greater than that across $C_1$.)
Loop B oscillates with different natural frequency $\omega=\sqrt{\frac{3}{LC}}$ because the capacitors are in series.
You can (I think) use the principle of superposition to write the PD across each capacitor in loop B in the same way as in loop A.
Imagine the net PD to be contained in a separate battery (as in loop A) of opposite polarity to the net PD $V$, and the 3 capacitors to be initially uncharged. The net PD of the battery oscillates sinusoidally between the one inductor and the 3 capacitors, between $0$ and $-2V$. The voltage across each capacitor reaches a maximum of $-\frac23V$.
On top of this solution you superpose the initial values of the PD across each capacitor. So $C_1, C_2, C_3$ reach maximum PDs of $-\epsilon_1-\frac23V, -\frac23V, E-\frac23V$. (I have used $-\epsilon_1$ as the initial PD on $C_1$ because it had opposite polarity to $C_3$. So assuming that $|\epsilon_1| \lt |E|$ then the reverse polarity on $C_1$ will initially increase.)