By symmetry the current in branch CO equals the current in branch OB. Therefore the two branches CO and OB can be detached from O, while remaining connected to each other.
Branch CB then consists of two parallel branches, one of $r$ and one of $2r$. This combination is equivalent to $\frac23r$. The resistance across ACBB' (where B' is the output node) is then $r+\frac23r+r=\frac83r$.
The same trick can be applied to symmetrical branch ACDB' to reduce it also to $\frac83r$.
The network between input and output nodes is made up of 3 branches in parallel (ACBB', AOB', AEDB') with resistances $\frac83r, 2r, \frac83r$ respectively. The two resistances of $\frac83r$ in parallel are equivalent to $\frac43r$. This combination is in parallel with $2r$ so the total resistance is $$\frac{\frac43r \times 2r}{\frac43r+2r}=\frac45r$$

See Stemez JEE physics.